KILLEDRuntime Complexity (full) proof of /tmp/tmp2FqrLy/4.05.xml
The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF).0 CpxTRS↳1 DecreasingLoopProof (⇔, 390 ms)↳2 BOUNDS(n^1, INF)↳3 RenamingProof (⇔, 0 ms)↳4 CpxRelTRS↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)↳6 typed CpxTrs↳7 OrderProof (LOWER BOUND(ID), 0 ms)↳8 typed CpxTrs(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(x, y), z) → +(*(x, z), *(y, z))
*(x, 1) → x
*(1, y) → y
Rewrite Strategy: FULL(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
*(x, +(y, z)) →+ +(*(x, y), *(x, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / +(y, z)].
The result substitution is [ ].(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
*'(x, +'(y, z)) → +'(*'(x, y), *'(x, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, 1') → x
*'(1', y) → y
S is empty.
Rewrite Strategy: FULL(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.(6) Obligation:
TRS:
Rules:
*'(x, +'(y, z)) → +'(*'(x, y), *'(x, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, 1') → x
*'(1', y) → y
Types:
*' :: +':1' → +':1' → +':1'
+' :: +':1' → +':1' → +':1'
1' :: +':1'
hole_+':1'1_0 :: +':1'
gen_+':1'2_0 :: Nat → +':1'(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
*'(8) Obligation:
TRS:
Rules:
*'(x, +'(y, z)) → +'(*'(x, y), *'(x, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, 1') → x
*'(1', y) → y
Types:
*' :: +':1' → +':1' → +':1'
+' :: +':1' → +':1' → +':1'
1' :: +':1'
hole_+':1'1_0 :: +':1'
gen_+':1'2_0 :: Nat → +':1'Generator Equations:
gen_+':1'2_0(0) ⇔ 1'
gen_+':1'2_0(+(x, 1)) ⇔ +'(1', gen_+':1'2_0(x))The following defined symbols remain to be analysed:
*'